Tuesday, April 2, 2019
History Of Weibull Distribution
History Of Weibull disseminationIn probability theory and statistics, the Weibull dispersion is one of the well-nigh weighty continuous probability diffusions. It was, primary introduced by W. Weibull in 1939 when he was examine the issue of geomorphologic military strength and life in throwation analysis, and was formally named subsequently him later in 1951. He proposed the chain ride to explain the structural strength. establish on the presumptuousness that a structure is still of some(prenominal) small components (n pieces) in series, we could consider the structure as being composed of an n-rings chain, the strength of which (or life) completely depends on the weakest rings strength (or life). In his model, with the assumption that the strength of antithetical rings argon independent and identically distributed, conclusion the strength scattering of the chain become the riddle of finding the diffusion of the weakest ring.Due to the top of research conducted by Gnedenko (1943), no matter what the airplane pilot dispersal of the variable is, the asymptotic dissemination of the minimum could only be three different forms. The Weibull dissemination is one of them.Since Weibull diffusion is established on the weakest link model, which could sufficiently reflect the fault of hooey and the effects of seek concentration, it has been considered as appropriate model to describe strength of roughage real(a) in practical application.1.2 Stress-Strength AnalysisStress-Strength Analysis is the analysis of the endurance of materials subjected to a random line. Stress-Strength Analysis is a commonly roled tool in reliability plan.The stress-strength reliability is attached byWhere is the pdf of the strength dispersal and is the additive distribution run low of the stress distribution.In this case, the entropy for the strength primed(p) would be actual information that is indicative of the strength of the material (i.e. uttermos t utilize stress to commence failure), and the stress entropy would be actual stress data of the material under use conditions.1.3 Research motivation TargetJudging from physical of carbon roughages, microscopic flaws cause elastic failure to occur below the intrinsic strength of the lineament. Therefore, analysis of pliant failure data should provide insight into the distribution of flaws within theatrical role. The fiber might be viewed as a chain of interlocking links, with the flaws playacting as weak links in the chain. As the same model mentioned previously, the chain exit fail at its weakest link. Usually tensile data do not confirm to rigid statistical distributions. Therefore, they cannot be cost by the specific fixed statistical distribution accurately. Instead, it is necessary to use a flexible distribution that enables the design of the distribution hunt to be altered by the data itself. Under this situation, the Weibull distribution is one the intrinsic prize.Although instaurationd on the theoretical model, Weibull distribution should be an appropriate interpretation strength distribution for carbon fibers. However, judging from semi semiempirical data, it incessantly suggests that the Weibull distribution is not an appropriate model for carbon fibers. One plausible problem is validity of independency assumption in the chain of links model. In that model, we assume a physical system is consisted of n identical units or items connected in series and separately unit should be respectively and identically distributed. However, in practice, this strict assumption cannot be guaranteed, which will cause the discrepancy of between real strength and Weibull distribution. For example, if there is a defect hole on n-th link, this defect hole will probably shed to adjacent link(n-1-th and n+1-th). That causes the problem of dependency.Another general plausible invoice is clamp effects which is analysed in detail by Phoenix and Se xsmith. In building upon this work, Stoner developed new end-effect Weibull model, in which distinct Weibull distributions were utilize to modify failures from true flaws and from artifacts in carbon fibers.Although, to some extent, the end-effect Weibull model accurately descripts the data upon which it was buttd, it provokes our interests in pre-stress issue applied on carbon fiber in advance it got attempted. Because in practice, much(prenominal) as in the strength render, fiber continuously suffer stress before they can be tested. For example, in the popular experiment proposed by Bader Pries, there is no guaranty that single fiber could be distinguished with pop any slight press of damage. Thus, in that experiment, they stress the fibers before they get tested, which will cause the strength test result representing all fibers performance survived from pre-stress.This question arise our interest in take away of pre-stress Weibull distribution. In the problem we will di scuss in this thesis, we assume that veritable strength of fiber is Weibull distributed. Therefore, if there is no pre-stress applied on fiber material, the final strength will be also Weibull distributed without any changes from origins. However, judging from common sense, pre-stress could not be avoided exclusively before the strength test. They commonly could occur in shipping procedure, and pre-test preparation procedure. Our goal is to find out under what conditions these pre-stressed fiber progress to a (approximately) Weibull distribution.In the second chapter, the results of survival fiber strength distribution under multi-type pre-stressed condition have been applyn out. At same time, a minimum censoring proportion has been dress up to assure the pre-stress has a significant effect on first fiber material.In the third chapter, MSE is used to measure the harmonisetingness of the pre-stressed criminalize prototype and nearest Weibull distribution. Moreover, we discu ss the worthiness of fit test applied to the pre-stressed ban sample and Weibull distribution with statements repute equal to MLEs from censor sample, which is considered as nearest Weibull distribution based on the censored sample.In the quaternary chapter, the simulation results of two methods proposed in the third chapter have been discussed and analyzed.Finally, we will give out a conclusion about survival distribution of pre-stress Weibull distribution.Chapter 2Weibull Family and Pre-Stressed Censored taste2.1 Basic Properties of Weibull DistributionThe probability density function of a Weibull random variable isThe disceptation is the skeleton parameter, is the surmount parameter, and is the stead parameter of the distribution. When , this reduces to the usual two-parameter Weibull distribution.The Weibull distribution is related to many other probability distributions in particular, it interpolates between the exponential distribution () and the Rayleigh distributio n ().The CDFThe cumulative distribution function for the two parameter Weibull distribution isfor , and for .The failure rate (or fortune rate) is accustomed byThe implicateThe mean, , of Weibull pdf is given byWhere is the gamma function evaluated at the value of .The MedianThe median, , is given byThe ModeThe mode, , is given byThe Standard DeviationThe standard deviation, is given byApplicationsThe Weibull distribution has multiple applications in practical world.Survival analysisReliability engineeringWeather forecastingGeneral insurance2.2 Censored Weibull SampleBecause our primary election interest is to study strength distribution of fiber material by and by pre-stressed, we need to generate various censored Weibull sample which is applied multi-type pre-stress. attached and are independent random variables where represent professional strength of material and pre-strength individually. So the problem of our interest is what distribution does variable have? To give tong ue to the problem more clearly, we assume the master copy strength of material always yield to Weibull distribution family. And the pre-stress yield to three different distribution families which are Weibull, Normal and Gamma. Based on different parameter choice, we will gauge to find out what value of the parameters give us that survival strength yield to or approximately yield to Weibull distribution.Mentioned in Chapter 1, we assume is weibull distributed with different shape and scale parameter. In this paper, we will from (pre-stress variable) from three different distribution Weibull distribution, Gamma distribution, and Normal distribution. Also as similar as original strength set, in individually distribution option, different parameters are elect to generate various censored Weibull sample.Meanwhile, since trivial results are not what we expected, a certain censoring ratio has been set up to guarantee there is a significant effect of pre-stress applied on original fiber carbon material. Serving to this purpose, samples with censoring proportion is 0.5 or greater than 0.5 will be kept, which is considered as plausible limit of censoring ratio.Chapter 3 Mean shape Error and Goodness of Fit TestThe Mean square Error (MSE) is a measure of how close fitted curve is to data localises. For every(prenominal) data point, the vertical distance from the point to the corresponding value on the fitted curve (the error) will be taken, and the value will be squared. thus those squared values have been added up for all data points, and been separate by the number of points, which is considered as a mean. Since all errors have been switched into unconditional values on matter what original sign they have, negative values do not cancel positive values. The small the Mean Squared Error, the closer the fit curve is to the data points.MSE has been colossally used for duodecimal performance metric in the field of statistical regression and engineering, such as signal processing.3.1 Comparison of MSE of Censored Weibull SampleBased on the censored Weibull Sample we got, we will calculate out MLE of parameters for Weibull distribution, noted as and , which is considered as nearest Weibull distribution to censored weibull sample. Since our objective is to measure fitness of censored Weibull sample and nearest Weibull distribution, MSE between of censored Weibull sample and Weibull distribution with parameters and . We establish the MSE as following wayWhere are censored Weibull sample which is take as . is empirical CDF at sample point . is be as sample size. And is CDF of Weibull distribution with parameter , which is MLEs got based on censored Weibull sample.In addition, a baseline of MSE comparison is established by compute MSE between the sample of size from Weibull() and Weibull() distribution.Where consist the sample of size from Weibull(), which is sorted as ascending methodicalness . is empirical CDF at sample point . And is CDF of Weibull distribution with parameter .3.2 Comparison via Simulation runWe conducted a large simulation study to compare of the performance of loss between base MSE and sample MSE depends on different censoring stress distribution and parameter chosen. For example, let original strength distribution yields to Weibull(1,1), and censoring stress distribution is Gamma distribution with parameter value chosen from the range 0.25 to 2.5, and then we will tenseness on the performance of fitness of cersored sample to Weibull distribution from various aspects such as censoring proportion, shape parameter value of censoring distribution and scale parameter value of censoring distribution.From in a higher place figure, we could not hardly see that the MSE increases with increasing of cersoring proportion, which could be simply see as survival data will go off the original strength distribution when considerable proportion of original strength failed the pre-stress test. Meanwhile, the base MSE keeps relatively stable, since it will not be affected by different pre-stress distribution. Therefore, it is obvious to tell that difference between MSE and base MSE is raised up when the censoring proportion increases, which indicates fitness will go worse at same time.The series of comparison MSE chart are arranged by the ascending order of value of Shape Parameter of Gamma Distribution. If we focus on the changing trend of Average Difference between Sample MSE and Base MSE, we could easily figure out that the Average Difference decreases as long as value of shape parameter become small and smaller. This shows that fitness of sample is improved by using smaller shape parameter of pre-stress Gamma distribution.On the other side, if we focus on each individual chart, it is not too hard to find that when the value of exceed increases, difference between Sample MSE and Baseline decreases, which indicates fitness is improved by larger scale parameter chosen. This phenomen on could be interpreted as larger scale brings in less spread compared with smaller ones create arrogant peak in pdf, which breaks the continuity of censored sample.Above figure is boilersuit behavior of MSE based on different choice of shape and scale parameter of pre-stress gamma distribution. To summary up, In general MSE boosts up where is smaller scale value and larger shape values. Fitness performance indicates censored sample is still Weibull (or approximately Weibull) distributed when shape and scale parameter choice close to minimum and maximum individually.Chapter 4 Fit Study Based on Weibull Goodness-of-Fit TestsIn order to study whether the censored weibull distribution data yields to a weibull distribution, we first generate different censored weibull samples based on different censoring function. Then we use the weibull distribution with parameters value equal to MLE of censored sample as hypothesis. Three Goodness-of-Fit Tests are manipulated to censored weibull samp les. We obstruction whether simulation results shows censored weibull sample still yields to a weibull distribution.Goodness-of-fit testsGoodness-of-fit tests for the two-parameter Weibull distributions have force considerable attention since its searing importance. Mann and others (1973), Smith and Bain (1976), Stephens (1977), Littell and others (1979), Chandra and others (1981), Tiku and Singh (1981), Wozniak and Warren (1984), and James and others (1989) have gave out universal discussion of this problem. Mann and others (1973) and Tiku and Singh (1981) proposed new statistics to test the goodness-of-fit of two-parameter Weibull distribution. ), Smith and Bain (1976) proposed a test statistic to test normality which is analogous to the Shapiro-Francis statistic. The Smith and Bain statistic was derived from the sample correlation coefficient between the order statistics of a sample and the expected value of the order statistics under the assumption that the sample comes from a two-parameter Weibull distribution. They provided critical values for samples containing 8, 20, 40, 60, 80 observations. Stephens (1977) provided tables of the asymptotic critical values of the Anderson-Darling statistic and the Cramer-von Mises statistic for various significance levels. Littell and others (1979) made a comparison among the Mann, Scheuer, and Fertig statistic, the Smith and Bain statistic, the limited Kolmogorov-Smirnov statistic, the modified Anderson-Darling statistic, and the modified Cramer-von Mises statistics through a various of personnel studies for sample size n = 10 to 40. unfavourable values for the , , and statistics for n = 10 to 40 have been calculated and provided at the same time. Chandra and others (1981) calculated critical values for the Kolmogorov-Smirnov statistic for n = 10, 20, 50 and timelessness for three situations. James and others produced extensive tables of goodness-of-fit critical values for the two parameter Weibull distributions developed through simulation for the Kolmogorov-Smirnov statistic, the Anderson-Darling statistic, and Shapiro-Wilk-type correlation statistics.Kolmogorov-Smirnov statisticKolmogorov-Smirnov test (Chakravart, Laha, and Roy, 1967) is widely used for comparing a sample with a reference probability distribution (one-sample K-S test), or for comparing two samples (two-sample K-S test). Since it is highly metier to distinguish the difference of the empirical cumulative distribution functions of the tested samples, it has been considered as one of the most useful nonparametric methods for comparing two samples. Kolomogorov-Smirnov test is based on the distance between the empirical distribution function of the sample and the cumulative distribution function of the reference distribution, or between the two samples empirical distribution functions.Kolmogorov-Smirnov test has been modified to serve as a goodness of fit test here. The modified Komogorov-Smirnov D statistic is given bywhere is the empirical distribution function of the sample and is the fitted distribution.Anderson-Darling statisticAnderson-Darling test (Stephens, 1974) is used to test whether the data follow a particular distribution. It is named after Theodore Wilbur Anderson and Donald A. Darling who proposed it in 1952. Anderson-Darling test is based on Kolmogorov-Smirnov test and enjoys superior property of more sensitive due to specific distribution application in calculating critical values. Contrarily, its disadvantage is that critical values must be calculated for each distribution.Anderson-Darling test has been modified to serve as a goodness of fit test here. The modified Anderson-Darling statistic is given byWhere and is the th-order statistic.Shapiro-Wilk-Type correlation statisticsIn statistics, the Shapiro-Wilk test is used as the tester of goodness-of-fit test of normal distribution. It has the superior power compared with other statistics in detecting the data comes from a relatively wide range of other distributions for testing goodness-of-fit of normal distributions which has been proposed from Monte-Carlo study of Shapiro and others (1968).Shapiro-Wilk test has been modified to serve as a goodness of fit test here. The statistic first proposed by Shapiro and Francia (1972) but with approximate scores suggested by Filliben (1975) and modified form fitting for good-of-fit test for Weibull distributions is given byAndIs the median score, in the core of Filliben, except that these scores depend upon the maximum likelihood estimate the Weibull shape parameter .If a variable has the two-parameter Weibull distribution, the variable has an extreme value distribution. cipher goodness-of-fit on this scale has advantages. Since the extreme value distributions are defined by location and scale parameters, the critical values for the correlation statistic are not dependent on the true shape parameter. Thus, for two-parameter Weibull distribution, we propose the correlat ion-type statistic , whereAndSimulation Result
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.